Single annulus $L^p$ estimates for Hilbert transforms along vector fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD

We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).

متن کامل

TWO-SIDED Lp ESTIMATES OF CONVOLUTION TRANSFORMS

where ψ{v) = u, u. R. O'Neil obtained sharp upper and lower estimates when ψ(u) — u and n — 2, [3, Lemma 1.5]. Our results coincide with his for this case. We were able to apply our estimates for the case ψ(u) = u (^-arbitrary) to classical Fourier transform inequalities of Hardy and Little wood. The main problem of this paper is to determine whether or not one can obtain the same types of uppe...

متن کامل

L Estimates for Bilinear and Multi-parameter Hilbert Transforms

C. Muscalu, J. Pipher, T. Tao and C. Thiele proved in [27] that the standard bilinear and bi-parameter Hilbert transform does not satisfy any L estimates. They also raised a question asking if a bilinear and bi-parameter multiplier operator defined by Tm(f1, f2)(x) := ∫ R m(ξ, η)f̂1(ξ1, η1)f̂2(ξ2, η2)e 1122dξdη satisfies any L estimates, where the symbol m satisfies |∂ ξ ∂ ηm(ξ, η)| . 1 dist(ξ,Γ1...

متن کامل

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Double Hilbert Transforms along Polynomial Surfaces in R3

where P(s, t) is a polynomial in s and t with P(0,0)= 0, and ∇P(0,0)= 0. We call H the (local) double Hilbert transform along the surface (s, t,P (s, t)). The operator may be precisely defined for a Schwartz function f by integrating where ≤ |s| ≤ 1 and η ≤ |t | ≤ 1, and then taking the limit as ,η→ 0. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Iberoamericana

سال: 2013

ISSN: 0213-2230

DOI: 10.4171/rmi/748